
J .  Fluid Mech. (1979), vol. 92, part 4, pp.  659-670 

Printed in Great Britain 

659 

The influence of a third diffusing component upon the 
onset of convection 
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The small amplitude stability analysis for the onset of double-diffusive convection 
when the density gradient is gravitationally stable is extended to include a third 
diffusing component. Special attention is given to systems with K~ 9 K ~ ,  K~ and 
Pr 9 K ~ / K ~ ,  where K~ is the molecular diffusivity of the ith component and Pr is the 
Prandtl number based on the largest of the K ~ .  It is found that the boundary for the 
onset of overstability is approximated by two straight lines in a Rayleigh number 
plane. Small concentrations of a third property with a smaller diffusivity can have a 
significant effect upon the nature of diffusive instabilities, the magnitude of this effect 
being proportional to K J K ~ .  Oscillatory and direct ‘salt-finger ’ modes are found to be 
simultaneously unstable under a wide range of conditions when the density gradients 
due to the components with the greatest and smallest diffusivities are of the same sign. 

1. Introduction 
Convective phenomena which are driven by the differential diffusion of two proper- 

ties such as heat and salt are thought to occur in many contexts, some of which are 
listed by Turner (1974). To determine the conditions under which these motions will 
occur, the linear stability of two superposed concentration (or temperature) gradients 
has been studied by Stern (1960), Walin (1964), Veronis (1965), Nield (1967) and 
Baines & Gill (1969). Veronis (1968)) Straus (1972), Huppert (1976) and Huppert & 
Moore (1976) have considered the stability of such a system to finite amplitude dis- 
turbances. These studies have shown that statically stable density gradients may be 
unstable when the density gradients due to individual components are opposed. Salt 
fingers can occur when the component with the smaller diffusivity is gravitationally 
destabilizing, while a destabilizing gradient of the faster diffusing property leads to 
oscillatory instability. 

Only doubly diffusive convection has been considered. There are many fluid systems, 
however, in which more than two components are present. For example, Degens 
et al. (1973) report that the saline waters of geothermally heated Lake Kivu are strongly 
stratified by temperature and a salinity which is the sum of comparable concen- 
trations of many salts, while the oceans contain many salts in concentrations less than 
a few per cent of the sodium chloride concentration. In laboratory experiments on 
double-diffusive convection, dyes or small temperature anomalies introduce a third 
property which affects the density of the fluid. The ‘diffusive overturning ’ described 
by McIntyre (1970)) which is suggested to occur in Gulf Stream eddies (Lambert 
1974), also involves three components, angular velocity, temperature and salinity, 
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and more complicated systems can be found in magmas and molten metals (Jakeman Q 
Hurle 1972). Results of a small amplitude stability anaIysis for linear concentration 
gradients of three components are presented here. 

2. Linearized stability analysis 
Consider a fluid containing three diffusing properties and let 

K1 > K, > K3, (2-1) 

where K~ is the coefficient of molecular diffusion for the ith component; let Ci be the 
corresponding concentration. In  the Boussinesq approximation the equation of state 
is 

P=Pm[1+ZCPiQil, (2.2) 
i 

where pm is the mean density of the system and the pi are (local) constants. 
The z' axis is chosen to be directed vertically upwards and the initial property 

gradients are assumed to be vertical and linear through a layer of fluid which is con- 
fined between two horizontal boundaries a t  z' = 0 and h. These boundaries are assumed 
to be dynamically free and perfectly conducting (or permeable) to all components. 
The concentration difference between the boundaries is ACi with the sign convention 
that ACi > 0 when a component is 'destabilizing'. As in the two-component problem 
(see Baines & Gill 1969), the non-dimensional parameters are defined by scaling with 
h and K ~ .  We then have Rayleigh numbers, Ri, diffusivity ratios 7+ and a Prandtl 
number Pr given by 

Ri = h 3 g a i A C i / ~ ~ 1 ,  Pr = v/K1, 7i = K ~ / K ~  (i = 1,2 ,3) .  (2.3) 

Considering only two-dimensional motions with velocity q = (u, 0, w), the linearized 
perturbation equations of vorticity and conservation of each component become 

(2.4) 
(apt-+ v2) ei = R~ a@/ax (i = i , 2 ,3 ) ,  1 

where the Oi are non-dimensional concentrations and @ is a two-dimensional stream 
function. The boundary conditions are 

el = e, = e, = @ = a2@/aza = o at z = 0, 1. 

Substitution of normal modes with exponential growth rate cr, horizontal wave- 
number roc and vertical wavenumber ?T into (2.4) yields the characteristic equation 

+ U' 7 2  + 7 3  + 7 2 7 3  + 7 2  - 7 3  - ( 7 , + ~ ~ )  R;- (1  + T ~ )  Ri- (1  +T,)  R;] Pr  

+7273[1 -R;-Ri/72-.h!&h3] = 0, (2.5) 
[ 

with cr' = r / k 2 ,  R; = ( ? ~ ~ a ~ / k ~ ) B , ~  and k2 = n2(a2+ 1) .  Because (2.4) involves four 
rather than three time derivatives, (2.5) is of fourth order in the growth rate cr, in 
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contrast to the cubic relation familiar from the two-component analysis. For the most 
unstable mode a t  marginal stability 

a2 = 4, R; = (4/27+) Ri. (2.6) 

Relations (2.5) and (2.6) imply that for the most unstable mode a is real and positive 
in the half space 

so that instability is monotonic there.? Inequality (2.7) is the generalization of the 
Rayleigh number criterion R, 2374 for convection involving a single diffusing com- 
ponent. The plane surface of marginal stability on which equality holds in (2.7) will 
be denoted by 9. 

For the case of a, marginally stable oscillatory mode we substitute a = iai into 
(2.5) and require a, to be real. This yields a hyperboloidal surface 2? in Ri space, 
whose analytical derivation is given in the appendix and which is described in 0 3. 

The plane boundary B and the surface X alone still do not determine fully the 
conditions under which direct or oscillatory instability may occur, as there remains 
the possibility that complex roots of the quartic characteristic equation (2.5) may 
become real roots without their parts passing through zero. One such transition has 
been considered in the two-component case by Baines & Gill; however, two transitions 
occur for the quartic equation (2.5) discussed here. Numerical computations which 
are not presented here show that both the transition from no real to two real roots and 
the transition from two real to four real roots can influence the nature of the mode of 
instability. In  3 3 possible positions of the boundaries B and X are illustrated for 
two sets of molecular properties. 

3. Examples of stability boundaries 
3.1. A case where r2,r3 5 1 

Figure 1 (a )  shows the relevant portions of the intersections of B and of X with the 
plane RA = - 5 [see (2.6)]; ‘relevant portions’ means those which describe a change 
in the mode of instability for the most unstable mode. The numerical parameter 
values usedare /cl = 1.6 x cm2 s-l 
and Pr = V / K ,  = 625, corresponding to an aqueous solution of KCl, NaCl and sucrose. 
The diffusivity ratios are not far from unity, as is typical of molecular species in 
molten metals and magmas as well as of laboratory models using salt-sugar solutions. 
Figures 1 ( b )  and ( c )  show the same for the planes Rj = 0 and Rj = 5. The plane Y 
defined by 

cm2 s-l, /c2 = 1.3 x cm2 s-l, tc3 = 0.45 x 

X R i = O  
i 

and on which ap/az = 0 is also shown. 

t On the plane of marginal stzbility one root of (2 .5 )  and (2.6) is Q = 0. Although this is not 
always the root of maximum growth rate, numerical computations of the nature of the four 
roots show that ‘exchange of stabilities’ does occur when equality holds in (2.7) if the density 
gradient is gravitationally stable. 



662 

R: 

R. W. Grifiths 

FIGURE l (a ,b ) .  For legend see facing page. 

The asymptotes of the hyperbola are almost parallel, the slope of each being 
independent of the value of R;. The upper asymptote has slope - (Pr + r2 ) / (Pr  + 1).  
Salt fingers and overstable modes can occur (as the most unstable mode) a t  adjacent 
conditions when the fastest and slowest diffusing components are destabilizing (second 
quadrant of figure 1 ( c )  when R; is sufficiently large) and more extensively when these 
components are stabilizing (fourth quadrant of figure 1 a) .  

3.2. A cme where r2, 73 < 1 

The discussion of a three-component system may be simplified when r2, r3 + 0 and 
Pr r2  since X approaches its asymptotes in this limit and the asymptotes themselves 
degenerate into a pair of planes: 

( 3 . l a )  

R, + (7, + r3)-l (R, + R3) = 2Zn4. (3 .1b)  

When R, = 0, relation ( 3 . 1 ~ )  reduces to the condition for marginal stability of oscil- 
latory modes of two-component systems. 
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FIQURE 1. Stability boundaries for the most unstable mode when 7* = 0.81, T~ = 0.28, T* = 0.35 
and Pr = 625 a.t three values of Ri: (a)  Ri = - 5 ;  (b)  Rj = 0 ;  ( c )  Ri = 6. Tho co-ordinates 
are normalized with respect t o  the critical Reyleigh number %* and the lines are explained 
in the text. Horizontally hatched regions give overstable modes; oblique hatching shows 
conditions unstable to salt fingers. 

Here we use as an example the aqueous system heat-KCl-sucrose (i  = 1, 2, 3 
respectively), for which 

K~ = 1.4 x cm2 s-l, tc2 = 1.6 x cm2 s-l, 

tc3 = 0.45 x cm2 s-l and Pr = 7. 

Figures 2 (a), ( b )  and (c) show the relevant portions of the intersections of 9,s and 
9’ with the three planes Rj  = -0.96, Rj = 0 and RS = 0.96, respectively. It can be 
seen that A@ is described very closely by (3.1). 

To show the three-dimensional geometry more clearly the intersections of the sur- 
faces 9, X and 9’ with each other, as functions of Rj, will also be defined and are 
shown as broken lines in figure 2. The two asymptotes (3.1) intersect at the point A 
where R; = 1 and Ri = - Rj. This point lies to the left of B when R6 c 0 (see figure 2a). 
Then the lower asymptote (3.1 b )  of 3f and the plane 9 converge slowly to intersect at  
P,apointwhereR; = 1 -  IRjl(1-7*)/(7*T3)andR; = IRj(TZ2.HereT* = T ~ / T ~  = K ~ / K ~  

and the almost vertical broken line in the fourth quadrant of figure 2(a) is the 
locus of P as R j  is varied. The point P lies well within the region of static stability 
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FIQURE 2. Stability boundaries for the most unstable mode when 72 = 0.011, 7, = 0.003, 
7* = 0.28 and Pr = 7 at  three values of R;: (a )  RA = - 0.96; ( b )  Ri = 0; (c )  Rj = 0.96. Hatching 
and heavy lines have the same meaning as in figure 1 and the points A ,  B and P move along the 
fine broken lines when R; is va.ried. 

(provided that Ri < 0) ,  so that a stabilizing gradient of the component with smallest 
diffusivity causes a large extension of the range of values of R; and Ri a t  which over- 
stable modes occur. Further, P falls well below B, the intersection of B and 9’. 

For Ri > 0 (see figure 2c)  the point A lies to the right of 9, so that only one asymptote, 
(3.1 a) ,  is drawn. The intersection P now lies on the line R; + Pr (1 - 7*) RL/(Pr + 1) = 1 
in the second quadrant of the RL, R; plane. There are two points of interest: it may be 
shown that P again falls below B when RA > ( P r f  I)?*/( 1 -7*) ( FZ 3.1 in the present 
example); also, more obviously, a destabilizing gradient of component 2 (RL > 0) is 
no longer a necessary condition for the growth of salt fingers. 

Through the use of (2.6) in the above discussion, we have considered only the nature 
of the most unstable mode near marginal stability. As shown in $ 4 ,  the stability 
analysis yields further information about the physical behaviour of multi-component 
systems. 
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P 

FIGURE 3 ( a ) .  For legend see facing page. 

4. Physical behaviour of three-component systems 
We no longer restrict attention to the most unstable mode and allow a to vary. 

The portion of the plane B above its intersection with H’ (at P in figure 2) must now 
divide conditions to the left at which only oscillatory disturbances are unstable from 
conditions to the right at  which both overstable and monotonically growing modes are 
possible. This behaviour is illustrated schematically on the R,, R, plane in figure 3 (a) 
for R3 = - < 0 and in figure 3 ( b )  for R, = 7 > 0. As R, is varied the intersections 
A ,  B and P move along the fine broken lines; the values of R, a t  intersections of 9, 9’ 
and 9 with the R, axis are marked. 

In  these diagrams another plane surface 9 has been defined, to the right of which no 
wavelengths are overstable and only monotonic instability is possible. This plane 2’ is 
the locus of the intersections of 2 and B as the term n2a2/k6 is allowed to vary in (2.5). 
In  the limit 72, T~ + 0,  (2.5), (2.7) and (3.1) imply that 9 is vertical, while for the two- 
component case and arbitrary molecular properties Baines & Gill (1969) find the 
appropriate line to be (in the notation of this paper) 

- (Pr + 72) 
(Pr + 1) 7; R2’ R, = 

To explore the behaviour further, consider a system which lies in the fourth quadrant 
of figure 3 (a)  and which always has aplaz < 0. Then the components with the greatest 
and smallest diffusivities (K,  and K ~ )  both contribute negative density gradients 
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1\! 
FIGURE 3. Schematic three-component stability bounds (heavy lines) for (a) R, = -{  < 0, 
stabilizing, and ( b )  Rs = 7 > 0, destabilizing. Values of R, at intersections with R, = 0 are 
marked. Both oscillatory and salt-finger modes are unstable in the double-hatched region. 

opposing that due to component 2. When R, is sufficiently small the system is stable. 
However, if R, is increased until the (Rl, R,, R3) co-ordinates cross A? then some 
wavelengths become overstable, beginning at 01 = 2-*, the mode which represents a 
balance between more efficient diffusive transport and viscous damping. The oscillatory 
modes can transport more (in density terms) of component 2 by simple molecular 
diffusion than of components 1 and 3 combined, even though such disturbances 
transport components with greater diffusivity most rapidly. If R, is more destabilizing 
still, so that the conditions are just to the right of 8, the mode with wavenumber 
01 = 2-* grows monotonically while other modes remain overstable. R, is now large 
enough to overcome the stable stratification as well as viscosity and a t  larger values 
(to the right of 9) all unstable modes are direct. 

Overstable modes are not possible when a sufficiently large ‘stabilizing ’ gradient 
of component 1 relative to 1 R31 tends to cause a net upward diffusive density flux 
through oscillatory disturbances. However, direct modes can decrease the system’s 
potential energy by preferential transport of components with lower diffusivity . On 
the other hand, direct instability cannot occur with ap /& < 0 if I R,( is sufficiently 
small compared with lR31 since component 3 would then cause a net upward density 
flux. The subsequent finite amplitude motions have not been considered in the above 
discussion but, where both forms of instability are possible, they will depend upon the 
relative growth rates of the two forms, and the fastest growing mode (assuming no 
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interactions) may be calculated from the dispersion relation (2.5) a t  given Rayleigh 
number co-ordinates. 

5. Conclusions 
Two results of the analysis for triple-diffusive instability (assuming Pr $ K,/K,) 

are (i) that marginal stability of oscillatory modes occurs on a hyperboloid in Rayleigh 
number space but the surface is very closely approximated by its planar asymptotes for 
any diffusivity ratios, and (ii) that, when the density gradients due to the components 
with the greatest and smallest diffusivities are of the same sign, salt-finger and oscil- 
latory modes may be simultaneously unstable over a wide range of conditions. 

One of the three components may be neglected under conditions suggested by the 
stability boundaries. The influence of a component upon marginally stable oscillatory 
modes is proportional to I Ril (or /3, AC,), while the influence of any component upon 
the occurrence of salt fingers is proportional to I/3, ACi l~ i1 .  Thus small concentrations 
of slowly diffusing properties can be important. It might be noted here that the 
molecular diffusivity of suspended matter is many orders of magnitude less than that 
of salt. For cases in which K,, K~ < K ~ ,  the condition (3.1) for neutral stability of 
oscillatory modes can be written in terms of a total (salinity) Rayleigh number R,, 
where R, = R, + R,. Further, the onset of overstability is independent of the individual 
slower diffusing species present whenever temperature is sufficiently destabilizing to 
produce (thermal) convection if it alone was present. Once convection is proceeding, 
however, the flux of each component down its concentration gradient may be influenced 
by the individual molecular diffusion coefficients. Further work (such as the experi- 
ments by Turner, Shirtcliffe & Brewer 1970) is needed to establish the influence of a 
third component upon the fluxes through the resulting large amplitude convection, 
in particular, through 'salt-finger ' and ' diffusive ' interfaces. 

Many stimulating discussions with Prof. J. S. Turner and Dr D. J. Stevenson are 
gratefully acknowledged. Financial assistance was received from the Commonwealth 
and Australian National University Post-graduate Research Awards. 

Appendix 
We substitute = icr, into (2.5). Collecting real parts gives 

~r;~Pr-- l -  al2(D - R; - RL - 8;) + 7,-r3( 1 - R; - RL 721 - R' 3 3  7- 1) = 0, 

= (Pr/B)  [A  - (72 + 7.J R; - (1 + 73) R6 - (1 + 7,) Rj], 

(A 1)  

(A 2) 

and from the imaginary parts 

where A = 7, + T3 + 7273( 1 + PT-'), 
B = Pr+ 1 + ~ ~ + 7 ~ ,  

D = 1+72+73+Pr-1(72+73+7273).  

Together, (2.6), (A 1) and (A 2) describe the curve 

a, Rf+a, Ri+a3 Rg+a, R, R,+a, R, R3+a, R, R, 

+ 2$7r4[a, R, +a, R, + a, R3] + (2&r4)2a, = 0, (A 3) 
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where the coefficients are 

a, = - (Pr+ 1) (72+73), 

u2 = - (Pr + 72)  (1 + T ~ ) ,  

a3 = - ( P r + ~ ~ ) ( 1 + 7 ~ ) ,  

a 4  = 2( 1 + 73)  (72  + 73)  - B( 1 + 7 2  -k 273), 

as = 2( 1 + 7 2 )  (72  + 73)  - B(1-k 272 + 73), 
a6 = 2 ( 1 + 7 2 )  (1+73)-B(2+72+73), 
a, = (BD - 2A) ( 7 2  + 73) + AB - 7273 B2Pr-l, 
a, = (BD - 2A) ( 1  + 73) + AB - 73 B2Pr-l, 
a, = (BD - 2A) (1  + 72) + AB - 72 B2Pr-l, 
u,, = A2 - ABD + 72 73 B2Pr-I. 

We also require > 0 in (A 1 )  and (A 2 ) .  Thus the inequalities 

(72  + 73) R,+ (1. + 73)  R2 + (1  + 7 2 )  R3 < -rm 2 7  4A 

and 
z&r4D-R1-R2-R3+G* 2 0 

must be satisfied on (A 3), where 

G = R; + + Ri + 2(R1 R2 + R, R3 + R2 R3) 
+ 3gn4[47273 Pr-l(R, + R2rg1 + R3rg1) - 2D(R, + R2+ R3)] 

+ (2~7r4)2(D2-47273Pr-1). 
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Whenever 0 < 7 2  and 73 < 1 ,  (A 3) is an hyperboloid of which inequalities (A 4 )  
select the appropriate branch : the conditions a t  which the most unstable oscillatory 
mode is marginally stable. It becomes a paraboloid when 72,  73 = 1 ,  i.e. when only one 
component is present, and its intersection with any plane parallel to the R, = 0 plane 
becomes parabolic when r2, 73 = 0. 
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